Crystallography in the 21st century

2014

international year of crystallography

Ted Janssen, Theoretical Physics
University of Nijmegen
Abbé Haüy

Crystals built from ‘molécules intégrantes’
Wilhelm Röntgen

Max Laue
Father and son Bragg

\[2d\sin\theta = n\lambda\]
Lattice periodicity

\[r(n, j) = r_j + n_1a_1 + n_2a_2 + n_3a_3 \]

\[\rho(r) = \rho(r + n_1a_1 + n_2a_2 + n_3a_3) \]

Unit cell: region in space such that every atomic position can be brought here by lattice translations.

Atomic positions

\[r(n, j) \]
Reciprocal space = Dual space

Basis of lattice: $a_i \rightarrow$ Basis of reciprocal lattice a_i^*

Reciprocal lattice

$$a_i.a_j^* = \delta_{ij}$$

$$H = \sum_{i=1}^{3} h_i a_i^*$$

Lattice periodic function $f(r) = \sum_{H \in \Lambda^*} \hat{f}(H) \exp(iH.r)$

Brillouin Zone

- Unit cell of the reciprocal lattice

- Wigner-Seitz cell of the reciprocal lattice: all points of the reciprocal space closer to the origin than to any other point of the reciprocal lattice
Bloch theorem

\[\Psi(r) = \exp(i k \cdot r) U(r) \]

U(r) periodic, k in the Brillouin Zone
Diffraction

Scattering amplitude

\[F(H) = \sum_{n,j} f_j(H) e^{-W} \exp(iH.(n + r_j)) = \Delta(H \in \Lambda^*) \sum_j f_j(H) e^{-W} \exp(iH.r_j) \]

Intensity

\[I(H) = |F(H)|^2 \]

Problem of the phases:
only absolute value is measured.

End 20th century: ways to solve (Karl and Hauptman, Sütő)
Rotation symmetry - Point group

Identity
5 rotations over multiples of 60 degrees
6 reflections
Point group 6mm has order 12

Rotations+Translation-symmetry - Space group

Elements
\((R | a)\) with \(R\) from the point group
and a a translation, not necessarily a lattice translation
$(E, 0), \left(\frac{m_x}{2}a_1 + \frac{1}{2}a_2\right), \left(\frac{m_y}{2}a_1 + \frac{1}{2}a_2\right), (-E, 0)$
Selection rules

Density is invariant under elements of the space group

\[\rho(r) = \rho(gr) = \rho(Rr + t) \]

Scattering function is Fourier transform

\[\rho(r) = \int_H \hat{\rho}(H) \exp(iH.r) \]

Transformation in the reciprocal space the is

\[\hat{\rho}(H) = \exp(-iH.t)\hat{\rho}(R^{-1}H) \]

If \(R^{-1}H=H \) and \(\exp \neq 1 \), then the intensity vanishes

Space group gives conditions for the existence of Bragg peaks. Therefore, symmetry is important!
Instrumental techniques

Original X-ray tube

Diffractometer

Structure determination

Charge Coupled Device (CCD) camera
BIG instruments

Neutron diffraction
Electron diffraction
Synchrotron radiation

Femtosecond-pulses
Free-electron laser
More and more complicated structures determined

Examples

NaCl

Zeoliet
Addition of Na3 to complete the structure of Na$_2$CO$_3$
β-Mg$_2$Al$_3$ “The Monster”

Samson phase 1168 atoms / unit cell
Biological systems

DNA
Watson, Crick en Wilkins
Nobel prize 1962
Herpes Simplex Virus Type 1

Crystallographic structure of human fatty acid synthase

Very complex, but always lattice periodic
Quasicrystals: 1982

The difference: to the right a point symmetry that is not compatible with lattice periodicity!
5-fold symmetry is not compatible with lattice periodicity

$\tau \approx 0.618$
1982: quasicrystals

Dan Shechtman

10-fold symmetry in the diffractogram

Icosahedral symmetry
Roger Penrose

Dick (N.G.) de Bruijn

Also: Peter Kramer 3D icosahedral space filling (Acta Cryst. 1982)

Alan Mackay

Peter Kramer
Optical diffraction pattern
Mackay 1982

Indexable with 4 indices
Quasicrystals are not periodic but quasi-periodic

Fibonacci-chain: quasiperiodic
S
L
LS
LSL
LSLLS
LSLLSLSL
LSLLSLSLLSLLS

....................

Number S’s / Number L’s -> $\tau=(\sqrt{5}-1)/2$ Golden rule
Quasicrystals and quasiperiodic tilings can be obtained from a lattice periodic structure in more dimensions: the superspace.

This holds also for the Fibonacci chain

Embedding and unit cell of the Fibonacci chain

```
LSL.LS.LSL.LSLLS.LSLLS.LSLLS.LSLLS.LSLLS...
```

Vertical lines: atomic surfaces, y=0 physical space
Two-dimensional example

Eight-fold Ammann-Beenker tiling

Diffraction pattern and projection of the 4D Brillouin Zone
Small quasicrystals

Large quasicrystal AlMnPd

Clusters in a CdYb icosahedral quasicrystal
Aperiodic crystals were found already 20 years earlier.

- incommensurate spin waves
- incommensurate crystals:
 an incommensurate modulation:
 1964 de Wolff et al. discover γ-Na_2CO_3 with sharp diffraction peaks at positions k:

\[k = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^* + m(\alpha\mathbf{a}^* + \beta\mathbf{b}^*) \]

- incommensurate composites
 1978 $\text{Hg}_3\delta\text{AsF}_6$ with Hg-chains;

diffraction peaks at

\[k = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^* + m\gamma\mathbf{c}^* \]

γ is irrational: structure is incommensurate:
quasiperiodic en aperiodic
Also these aperiodic crystals are the intersection of a periodic structure in super space with the 3D physical space.

Modulated phase as intersection in 4D space

n-dimensional crystallography
Physics of aperiodic crystals

No 3D Brillouin Zone: use nD BZ or ‘approximants’

Ammann-Beenker tiling
aperiodic

Periodic approximant to aperiodic A-B tiling
Approximate irrational number by a series of rationals:
e.g. $\sqrt{1/2} \approx 2/3, 5/7, 12/17, \ldots$
Physical properties of aperiodic crystals

There is an nD BZ but no 3D BZ

Listen to Denis Gratias on this!

Electron states in a 1D modulated chain
APPLICATIONS

Ferroelectrics
smart cards

Multiferroics
data management, spin-dipole coupling

Spin structures

Biological structures, medicine, pills

Quasicrystals
low wear, low friction

Incommensurate phases transducers

One has to know the structure

Medicine

Smart card

Exhaust
Two-dimensionale space groups
in the Alhambra

octagonal Gunbad-i Kabud tomb tower
in Maragha, Iran (1197 C.E.)
Maurits Escher

Figure 228. Three-colored network pattern: M. Escher’s “Lizards.” This pattern has the symmetry of the two-dimensional Bieber group P6\(\text{mm}\). The complete hexagonal cell of the group can be obtained from three contiguous “rhombic” cells. The contour of one of the cells can be discerned in the pattern.
Polyhedra and 5-fold symmetry
Summary

Crystallography has seen a spectacular growth in these 100 years.

It has given an essential contribution to our knowledge of minerals, materials and biological structures.

The notion of ‘crystal’ has changed:
first: “minerals with symmetrically ordered flat faces”
then: “materials with lattice periodicity and a unit cell”
now: “materials with sharp peaks in the diffraction pattern”.

This development is partially due to the development of big instruments: the use of neutrons and synchrotron radiation.

The development of new materials would not have been possible without the use of new crystallographic techniques.

Therefore, there was a good reason for announcing 2014 as the International Year of Crystallography!